State-of-the-art BERT implementation for text classification. Description. This book provides a solid foundation for ‘Natural Language Processing’ with pragmatic explanation and implementation of a wide variety of industry wide scenarios. After reading this book, one can simply jump to solve real world problems and join the league of NLP developers. It starts with the introduction of Natural Language Processing and provides a good explanation of different practical situations which are currently implemented across the globe. Thereafter, it takes a deep dive into the text classification with different types of algorithms to implement the same. Then, it further introduces the second important NLP use case called Named Entity Recognition with its popular algorithm choices. Thereafter, it provides an introduction to a state of the art language model called BERT and its application. What you will learn ● Learn to implement transfer learning on pre-trained BERT models. ● Learn to demonstrate a production ready Text Classification for domain specific data and networking using Python 3.x. ● Learn about the domain specific pre trained models with a library called `aiops` which has been specially designed for this book. Who this book is for. This book is meant for Data Scientists and Machine Learning Engineers who are new to Natural Language Processing and want to quickly implement different NLP use-cases. Readers should have a basic knowledge of Python before reading the book. Table of Contents. 1. Introduction to NLP and Different Use-Cases. 2. Deep Dive into Text Classification and Different Types of Algorithms in Industry. 3. Named Entity Recognition. 4. BERT and its Application. 5. BERT: Text Classification. 6. BERT: Text Classification Code. About the Authors Amandeep has been working as a technical lead in the field of software development at the time of publishing this book. He has worked for almost eight years in a few of the top MNCs.
Price history
Oct 2, 2022
€14.39